If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+21^2=37^2
We move all terms to the left:
x^2+21^2-(37^2)=0
We add all the numbers together, and all the variables
x^2-928=0
a = 1; b = 0; c = -928;
Δ = b2-4ac
Δ = 02-4·1·(-928)
Δ = 3712
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3712}=\sqrt{64*58}=\sqrt{64}*\sqrt{58}=8\sqrt{58}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{58}}{2*1}=\frac{0-8\sqrt{58}}{2} =-\frac{8\sqrt{58}}{2} =-4\sqrt{58} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{58}}{2*1}=\frac{0+8\sqrt{58}}{2} =\frac{8\sqrt{58}}{2} =4\sqrt{58} $
| 2(x-5)=6x-10-4x | | k/4+7=-12 | | 16t^2+20t+5=10 | | 7x-21=14x-70 | | -3y=9=6y-36 | | r2–7r–8=0 | | 11x=6x-75 | | 3n-13=4n-15 | | 2y+10=8 | | -38-7y=2-7(y+) | | 6(6+3)+2y=26 | | -38-7y=2-7(y-6) | | 1/2x+3/4=1/2 | | y+82=121 | | 24−2n=14 | | 3/4÷w=12 | | 2n-13/5-n-3/11=1+n-9/5 | | X+x1+x2=423 | | -5(v+5)=5v+15 | | 18^2+15x+5=0 | | -9(x-1)=8x+26 | | 4w=18+1w | | 5y=20y | | 15z=6z+27 | | 6x+1=5+7x | | -5(-3w+5)-2w=3(w-1)-8 | | 7x=822 | | 4x+3=11-2x | | -14=5(x-7)-8x | | 3n-15=n-7 | | 3z+147=180 | | -5(-3w+5)-2w=3(w-1) |